1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
| import math import copy import random import numpy as np
class GoNode: def __init__(self, color, steps, remove_nodes={}): self.color = color self.steps = steps self.remove_nodes = remove_nodes
def __hash__(self) -> int: return hash(self.color) + hash(self.steps)
def __eq__(self, other): if isinstance(other, self.__class__): return self.color == other.color and self.steps == other.steps else: return False
class Board: def __init__(self, n): self.matrix = [[GoNode(0, 0) for i in range(n)] for j in range(n)] self.__n = n self.__stop_nodes = {} self.latest_color = -1 self.latest_steps = 0 def __str__(self): out_str = "" for i in range(self.__n): for j in range(self.__n): out_str += str(self.matrix[i][j].color) return out_str
def step(self, x, y): if self.matrix[x][y].color != 0: return False, None _, latest_node = self.__get_latest_node() if ( latest_node is not None and len(latest_node.remove_nodes) == 1 and list(latest_node.remove_nodes.keys())[0] == (x, y) ): return False, None
self.latest_color *= -1 self.latest_steps += 1 self.matrix[x][y] = GoNode(self.latest_color, self.latest_steps)
result_liberties = self.__cal_liberties(x, y, self.latest_color, {}, {}) result_remove = self.__remove_dead_node(x, y, self.latest_color, {}) remove_num = len(result_remove) if len(result_liberties[1]) == 0 and not remove_num > 0: self.latest_color *= -1 self.latest_steps -= 1 self.matrix[x][y] = GoNode(0, 0) return False, None if remove_num > 0: self.matrix[x][y].remove_nodes = result_remove return True, remove_num
def step_back(self): if self.latest_steps > 0: self.latest_color *= -1 self.latest_steps -= 1 (x, y), latest_node = self.__get_latest_node() if latest_node is not None: if latest_node in self.__stop_nodes: del self.__stop_nodes[latest_node] else: self.matrix[x][y] = GoNode(0, 0) for (rx, ry), node in latest_node.remove_nodes.items(): self.matrix[rx][ry] = node
def step_none(self): self.latest_color *= -1 self.latest_steps += 1 self.__stop_nodes[GoNode(0, self.latest_steps)] = 1
def get_winner(self): black, white = self.get_result() white += 3.75 if black > white: return 1 elif black < white: return -1 else: return 0
def get_result(self): board_matrix = self.__get_pure_board()
score_black = np.sum(board_matrix == 1) score_white = np.sum(board_matrix == -1)
score_black_empty = 0 score_white_empty = 0 empties = zip(*np.where(board_matrix == 0)) cache_result = {} for empty in empties: visited = {} result_spread = self.__get_spread_result( board_matrix, empty[0], empty[1], visited, cache_result ) cache_result[empty] = result_spread if result_spread == (True, False): score_black_empty += 1 elif result_spread == (False, True): score_white_empty += 1
return score_black + score_black_empty, score_white + score_white_empty
def get_legal_positions(self): legal_positions = [] for i in range(self.__n): for j in range(self.__n): if self.__is_legal(i, j): legal_positions.append((i, j)) return legal_positions
def __get_pure_board(self): pure_matrix = np.zeros((self.__n, self.__n)) for i in range(self.__n): for j in range(self.__n): pure_matrix[i][j] = self.matrix[i][j].color return pure_matrix
def __get_spread_result(self, board_matrix, i, j, visited, cache_result): if (i, j) in cache_result: return cache_result[(i, j)] visited[(i, j)] = True candidate_pos = [(i - 1, j), (i + 1, j), (i, j - 1), (i, j + 1)] result = [False, False] for x, y in candidate_pos: if x < 0 or x >= self.__n or y < 0 or y >= self.__n or visited.get((x, y), False): continue if board_matrix[x][y] == 1: result[0] = True elif board_matrix[x][y] == -1: result[1] = True else: ret = self.__get_spread_result( board_matrix, x, y, visited, cache_result ) result[0] |= ret[0] result[1] |= ret[1] return tuple(result)
def __cal_liberties(self, x, y, color, chess_checked={}, territory_checked={}): chess_checked[(x, y)] = 1 candidates_pos = [(x - 1, y), (x + 1, y), (x, y - 1), (x, y + 1)] for nx, ny in candidates_pos: if nx < 0 or nx >= self.__n or ny < 0 or ny >= self.__n: continue if self.matrix[nx][ny].color == 0 and (nx, ny) not in territory_checked: territory_checked[(nx, ny)] = 1 elif self.matrix[nx][ny].color != 0: if self.matrix[nx][ny].color == color and (nx, ny) not in chess_checked: result = self.__cal_liberties( nx, ny, color, chess_checked, territory_checked ) chess_checked = {**chess_checked, **result[0]} territory_checked = {**territory_checked, **result[1]} return chess_checked, territory_checked
def __remove_dead_node(self, x, y, color, chess_checked={}): waitRemove = {} chess_checked[(x, y)] = 1 candidates_pos = [(x - 1, y), (x + 1, y), (x, y - 1), (x, y + 1)] for nx, ny in candidates_pos: if nx < 0 or nx >= self.__n or ny < 0 or ny >= self.__n: continue if self.matrix[nx][ny].color != 0 and (nx, ny) not in chess_checked: if self.matrix[nx][ny].color != color: result_liberties = self.__cal_liberties( nx, ny, self.matrix[nx][ny].color, {}, {} ) if len(result_liberties[0]) > 0 and len(result_liberties[1]) == 0: waitRemove = {**waitRemove, **result_liberties[0]} result_remove = {} for rx, ry in waitRemove: result_remove[(rx, ry)] = self.matrix[rx][ry] self.matrix[rx][ry] = GoNode(0, 0) return result_remove
def __get_latest_node(self): pos = (None, None) latest_node = None for i in range(self.__n): for j in range(self.__n): node = self.matrix[i][j] if node.color == 0: continue if latest_node is None: latest_node = node pos = (i, j) elif node.steps > latest_node.steps: latest_node = node pos = (i, j) for node in self.__stop_nodes: if node.steps > latest_node.steps: latest_node = node return pos, latest_node
def __is_legal(self, x, y): is_success, _ = self.step(x, y) if not is_success: return False self.step_back() return True
class TreeNode: def __init__(self, board: Board, father, pos_from_father): self.board = board self.child = [] self.father = father self.value = 0 self.times = 0 self.pos_from_father = pos_from_father
def uct_score(self, iter, color, c=2): if self.times == 0: return float("inf") if color == 1: return self.value / self.times + c * math.sqrt(math.log(iter) / self.times) else: return ( 1 - self.value / self.times + c * math.sqrt(math.log(iter) / self.times) )
def expand(self): legal_pos = self.board.get_legal_positions() for x, y in legal_pos: new_board = copy.deepcopy(self.board) new_board.step(x, y) self.child.append(TreeNode(new_board, self, (x, y))) def select(self, iter, color): max_uct_score = self.child[0].uct_score(iter, color) select_node = self.child[0] for i in range(1, len(self.child)): child_uct_score = self.child[i].uct_score(iter, color) if child_uct_score > max_uct_score: max_uct_score = child_uct_score select_node = self.child[i] return select_node def rollout(self): rollout_board = copy.deepcopy(self.board) board_map = {} while True: legal_pos = rollout_board.get_legal_positions() if str(rollout_board) in board_map or len(legal_pos) == 0: return rollout_board.get_winner() random_pos = random.choice(legal_pos) rollout_board.step(random_pos[0], random_pos[1]) board_map[str(rollout_board)] = 1 def update(self, value): self.value += value self.times += 1 def is_leaf_node(self, ): return len(self.child) == 0 def is_done(self): legal_pos = self.board.get_legal_positions() return len(legal_pos) == 0
class MCTS: def __init__(self, board, max_iter=1): self.root = TreeNode(copy.deepcopy(board), None, None) self.max_iter = max_iter def run(self): for i in range(self.max_iter): if i % 10 == 0: print(f"Current iter: {i}") cur_node = self.root while not cur_node.is_leaf_node(): cur_node = cur_node.select(i, cur_node.board.latest_color * -1) is_done = cur_node.is_done() if not is_done: cur_node.expand() cur_node = cur_node.select(i, cur_node.board.latest_color * -1) winner = cur_node.rollout() else: winner = cur_node.board.get_winner() while(cur_node.father != None): cur_node.update(winner) cur_node = cur_node.father cur_node.update(winner) def opt_step(self): max_times = 0 opt_pos = None for node in self.root.child: if node.times > max_times: max_times = node.times opt_pos = node.pos_from_father return opt_pos[0], opt_pos[1]
|